Specimen Paper 2 SL

Q1 [4 marks	Q1	[4	ma	rks
-------------	----	----	----	-----

A cart of mass 3.0 kg moving at 6.0 m s⁻¹ collides with a stationary cart of mass 6.0 kg.

6.0 m s ⁻¹	
3.0 kg	6.0 kg

(a) Explain why the total momentum of the two carts before and after the collision is the s	ame. [2]
(b) The two carts stick together as a result of the collision. Determine the kinetic energy localision.	st in the

Q2 [6 marks]

	Discuss how the Rutherford-Geiger-Marsden scattering experiment led to the concl existence of an atomic nucleus.		[2]	
			nucleus decays by alpha decay into a nucleus of uranium (U).	
	(i)	State the rea	ction equation for this decay.	[2]
				••••••
	(ii)	-	g binding energies per nucleon are available:	
		Plutonium	7.5603 MeV	
		Uranium	7.5909 MeV	
		Helium	7.0739 MeV	
	Estima	ate the energy i	released.	[2]
••••				

Q3	8	ma	rks

(a)	Distinguish between a transverse and a longitudinal wave.	[2]

(b) The graph shows, at t = 0, the variation with distance of the displacement of particles in a medium in which a transverse wave of frequency 250 Hz is travelling to the right.

A particle P in the medium has been marked.

(i)	Calculate the speed of the wave.	[2]

(ii) Draw a graph to show the variation with time t of the displacement of P. [2]

(c) A standing wave is formed on a string with both ends fixed. The solid line represents the wave at t = 0 and the dashed line at t = T/2 where T is the period. The blue line represents the wave at

$$t=\frac{T}{8}$$
.

The marked point shows the **equilibrium** position of a point P on the string.

At
$$t = \frac{T}{8}$$
 draw

- (i) a point to indicate the position of P. [1]
- (ii) an arrow to indicate the velocity of P. [1]

Q4 [7 marks]

The HR diagram shows the Sun and three other stars X, Y and Z.

(a)	X is much hotter than Z yet X and Z have the same luminosity. Explain this observation.	[2]

(b) Calcu	late the ratio $\frac{R_{\rm Z}}{R_{\rm Y}}$ of the radius of Z to that of Y.	[3]
(c) Gravit	itational proceure tends to make stars contract. V and V are both stable stars	State have V
and o	itational pressure tends to make stars contract. X and Y are both stable stars. of Y manage to oppose their gravitational pressures.	
		[1]
and o (i)	of Y manage to oppose their gravitational pressures. X	[1]
and o	of Y manage to oppose their gravitational pressures.	

	_		
Q5			
しょう	רו	ma	rĸs

Two parallel plates are oppositely charged. The potential difference between the plates is $240\ V$ and their separation is $2.0\ cm$.

(a) Draw the ele	ectric field lines for this arrangement.	[2]
(b) Calculate the	e electric field strength between the plates.	[1]
	placed on the positively charged plate and is then released. ith the proton replaced by an alpha particle.	The experiment is
Calculate the rat	tio $rac{ extsf{v}_{ extsf{p}}}{ extsf{v}_{lpha}}$ of the speed of the proton to that of the alpha partic	le when the particles
reach the negative	ive plate.	[2]

(a) A container of fixed volume holds 7.0 mol of helium (${}_{2}^{4}$ He) at pressure 3.0×10^{5} Pa and

K.A. Tsokos

Q6 [20 marks]

temperature 270 K. The volume of a helium atom is about 3×10^{-30} m³. Calculate (i) the total volume of the molecules in the container, [2] (ii) the volume of the container, [2] (iii) the total mass of the helium gas. [1] (b) State and explain, by reference to the kinetic model of gases, why it is reasonable to consider helium in this container to behave as an ideal gas. [2]

(c)	The gas in (a) is heated at constant volume from a pressure of 3.0×10 ⁵ Pa and temperature				
	270 K to a pressure of 5.0×10^5 Pa. Calculate the new temperature of the gas.	[2]			
••••••		•••••••			
(d)	Draw a line on the <i>P-V</i> diagram to represent the change in (c).	[1]			
	o ♦				
	P				
	0				
	v				

(e)) (i)	Show that the change in the internal energy of helium is about 16 kJ.	[1]

	(ii)	Estimate the specific heat capacity of helium.	[2]
(f)		The emission spectrum of helium contains photons of energy 1.86 eV. Show that the wavelength of these photons is 667 nm.	[2]

(g) The graph shows the variation of the intensity *B* of the black body radiation emitted by the Sun for wavelengths near 667 nm.

The curve shows a dip at a wavelength of 667 nm.

(i)	Outline what is meant by black body radiation.	[2]
(ii)	Explain why the presence of the dip is evidence that the Sun contains helium.	[3]

Markscheme

1		
а	The total momentum stays the same when no external forces act on the system ✓ The carts exert equal and opposite forces on each other so the net force is zero ✓	[2]
b	6.0×3.0+0=(3.0+6.0)× $v \Rightarrow v = 2.0 \text{ ms}^{-1} \checkmark$ Change in KE: $\frac{1}{2} \times 3.0 \times 6.0^2 - \frac{1}{2} \times 9.0 \times (2.0)^2 = 36 \text{ J} \checkmark$	[2]

2			
a		A very small percentage of the incident alpha particles were	[2]
		scattered at very large scattering angles ✓	
		This required a huge electric force that could only be provided if	
		the positive charge of the atom was concentrated in a very	
		small, massive object√	
b	i	$^{239}_{94}$ Pu $\rightarrow ^{235}_{92}$ U $+ ^{4}_{2}\alpha$	[2]
		Correct numbers for U√	
b	ii	235×7.5909+4×7.0739−239×7.5603 ✓	[2]
		5.25 MeV √	

3			
а		In a transverse wave the displacement is at right angles to the	[2]
		direction of energy transfer√	
		In a longitudinal wave the displacement is parallel to the	
		direction of energy transfer ✓	
b	i	$\lambda = 0.30 \mathrm{m}\checkmark$	[2]
		$v = f\lambda = 250 \times 0.30 = 75 \text{ms}^{-1} \checkmark$	

4			
а		Luminosity also depends on area√	[2]
		Star Z has a much larger area than X√	
b	i	$ \frac{L_{z}}{L_{y}} = \frac{4\pi\sigma R_{z}^{2} T_{z}^{4}}{4\pi\sigma R_{y}^{2} T_{y}^{4}} = 10^{6} \checkmark $ $ \frac{R_{z}}{R_{y}} = \sqrt{10^{6} \times \frac{20000^{4}}{2500^{4}}} \checkmark $ $ \frac{R_{z}}{R_{y}} = 6.4 \times 10^{4} \checkmark $	[3]
С	i	X: by radiation pressure caused by fusion reactions ✓	[1]
С	ii	Y: by electron degeneracy pressure ✓	[1]

5		
а	Uniform lines from left to right in the interior√	[2]
	Edge effects√	

b	$E = \frac{V}{d} = \frac{240}{2.0 \times 10^{-2}} = 1.2 \times 10^4 \text{ NC}^{-1} \checkmark$	[1]
С	$W = Fd = qEd = q\frac{V}{d}d = qV = \frac{1}{2}mv^{2} \Rightarrow v = \sqrt{\frac{2qV}{m}} \checkmark$ $\frac{v_{p}}{v_{\alpha}} = \sqrt{\frac{q_{p}m_{\alpha}}{q_{\alpha}m_{p}}} = \sqrt{\frac{1}{2} \times 4} = \sqrt{2} \checkmark$	[2]

6			
а	i	$N = 7.0 \times 6.02 \times 10^{23} = 4.2 \times 10^{24} \checkmark$	[2]
		$4.2 \times 10^{24} \times 3.0 \times 10^{-30} = 1.3 \times 10^{-5} \text{ m}^3 \checkmark$	
а	ii	$V = \frac{RnT}{P} \checkmark$	[2]
		$V = \frac{8.31 \times 7.0 \times 270}{3.0 \times 10^5} = 5.2 \times 10^{-2} \text{ m}^3 \checkmark$ $7 \times 4 = 28 \text{ g} \checkmark$	
а	iii		[1]
b		One of the assumptions of the kinetic theory of gases states that the volume of the molecules is negligible compared to the volume of the gas \checkmark Here $\frac{V_{\text{molecules}}}{V_{\text{gas}}} = \frac{1.3 \times 10^{-5}}{5.2 \times 10^{-2}} = 2.5 \times 10^{-4}$ which is very small \checkmark	[2]
			[2]
С		$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Longrightarrow T_2 = T_1 \times \frac{P_2}{P_1} \checkmark$	[2]
		$T_2 = 270 \times \frac{5.0}{3.0} = 450 \text{ K} \checkmark$	
d		P	[1]
		0 0 V	
		Vertical straight line ✓	

е	i	$\Delta U = \frac{3}{2} Rn\Delta T = \frac{3}{2} \times 8.31 \times 7.0 \times (450 - 270) = 15706 \text{ J}\checkmark$	[1]
е	ii	Realization that $Q = \Delta U \checkmark$	[2]
		$c = \frac{Q}{m\Delta T} = \frac{15705}{0.028 \times (450 - 270)} = 3.1 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \checkmark$	
f		$E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} \checkmark$	[2]
		$\lambda = \frac{1.24 \times 10^{-6}}{1.86} = 666.6 \approx 667 \text{ nm} \checkmark$	
g	i	[2] max from Electromagnetic radiation with an infinite rage of wavelengths ✓ With a peak determined by temperature ✓ Radiation emitted by a body at some finite kelvin temperature ✓ Radiation with an intensity proportional to the 4 th power of the kelvin temperature ✓	[2] max
g	ii	Helium has energy levels separated by 1.86 eV ✓ This energy difference is unique to helium ✓ The dip implies that photons of this energy are absorbed ✓ By helium	[3]